Objective: This course for senior undergraduate and graduate students is designed to give an understanding of the fundamentals of molecular genetics. Molecular genetics is a powerful way of seeing nature that has uncovered many mysteries about how living things function. You will learn how to interpret, present, and discuss data from the primary literature.

Overview: How we perceive and respond to our environment is governed by the nervous system. The task of understanding how this network of specialized cells functions is a daunting one. Over the past 30 years, molecular genetic analysis of neural function in model organisms has greatly expanded our knowledge. By using the primary literature, we will discuss classic experiments that have made important contributions to neuroscience. These fundamental works will serve as a foundation for our discussion of more current papers. Although this course will focus on neurobiology, the molecular genetic approaches and techniques discussed are applicable to many biological questions.

The primary goals of this course are to improve student's comprehension of the primary literature and ability to think critically about research. Each week we will discuss papers covering the topics listed below. The papers will be presented by teams led by a graduate or senior undergraduate students. Each paper will be presented by a team on a rotating basis. The team is required to make a PowerPoint presentation for the paper that includes all the figures of the paper and a background slide or two at the beginning of the presentation. All students are required to read these papers and be prepared for a detailed discussion of the experiments presented within them. Review articles included in the syllabus will not be presented, they are provided to give you additional background. Presentations will be graded by the instructor and will constitute 50% of the final grade. Class participation and attendance will count as 20% of the final grade.

There will be a take home midterm exam and an in-class final exam that will account for the remaining 30% of the final grade. These exams will count equally, 15% of the final grade each. The exams will cover molecular genetic techniques and terminology as well as concepts presented in the paper presentations.

Course codes:
Undergraduate PCB 4133-U01 O (79994)
Graduate BSC 6936-U01 O (79995)

Course textbook: Decoding the Language of Genetics by David Botstein
Weekly meeting topics and readings:

Week 1 Aug 21st

Molecular genetics: an overview

Class 1: Tuesday
Concepts in Molecular Genetics
Lecture and discussion of readings from Decoding the Language of Genetics

Class 2: Thursday
Forward Genetics

Week 2 August 28th

Molecular genetics: an overview

Class 3: Tuesday
Genome Editing

Class 4: Thursday
Transgenesis & Binary systems for cell manipulation

Week 3 September 4th

Initial molecular genetic approaches to neuroscience

Class 5: Tuesday
S. Benzer (1971) From the gene to behavior. *JAMA* 218 (7): 1015-22. *(Background article)*
Background article

Class 6: Thursday

Week 4 September 11th
Ion channels & synaptic transmission

Class 7: Tuesday

Class 8: Thursday

Week 5 September 18th
Learning and memory

Class 9: Tuesday

Class 10: Thursday

Written take home exam questions given out, exam must be returned to me via email by September 25th (15% of final grade).

Week 6 September 25th

Visual perception

Class 11: Tuesday

Olfactory receptors

Class 12: Thursday

Week 7 October 2nd

Olfactory receptor expression

Class 13: Tuesday

Olfactory receptor evolution

Class 14: Thursday

Week 8 October 9th

Olfactory circuits

Class 15: Tuesday

Class 16: Thursday

Week 9 October 16th

Gustation

Class 17: Tuesday

Appetite

Class 18: Thursday

Week 10 October 23rd

Patterning the nervous system

Class 19: Tuesday

Class 20: Thursday

Week 11 October 30th

Guest Lectures on Coral genetics and Mosquito genetics

Content presented in lectures will be asked about in the final exam

Week 12 November 6th

Circadian Rhythm

Class 23: Tuesday

Social behavior

Class 24: Thursday

Week 13 November 13

Imaging neurons
Class 25: Tuesday

Optogenetics
Class 26: Thursday

Week 14 November 20

Mating behavior
Class 27: Tuesday

Fear
Class 28: Thursday

Week 15 November 27

Addiction & Thirst
Class 29: Tuesday

Class 30: Thursday

Review Session

Finals week: December 4th

In-class final exam (15% of final grade)

Grading Scale: A 100-94 A- 93-90 B+ 89-87 B 86-84 B- 83-80 C+ 79-77 C 76-74 C- 73-70 D+ 69-67 D 66-64 D- 63-60 F < 60

Academic Misconduct: Florida International University is a community dedicated to generating and imparting knowledge through excellent teaching and research, the rigorous and respectful exchange of ideas, and community service. All students should respect the right of others to have an equitable opportunity to learn and honestly demonstrate the quality of their learning. Therefore, all students are expected to adhere to a standard of academic conduct, which demonstrates respect for themselves, their fellow students, and the educational mission of the University. All students are deemed by the University to understand that if they are found responsible for academic misconduct, they will be subject to the Academic Misconduct procedures and sanctions, as outlined in the Student Handbook.

Full handbook and information can be found at:
http://www.fiu.edu/~oabp/misconductweb/1acmisconductproc.htm

DEFINITION OF ACADEMIC MISCONDUCT: Academic Misconduct is defined as the following intentional acts or omissions committed by any FIU student:

1.01 Cheating: The unauthorized use of books, notes, aids, electronic sources; or assistance from another person with respect to examinations, course assignments, field service reports, class recitations; or the unauthorized possession of examination papers or course materials, whether originally authorized or not. Any student helping another cheat may be found guilty of academic misconduct.

1.02 Plagiarism: The deliberate use and appropriation of another's work without any indication of the source and the representation of such work as the student's own. Any student who fails to give credit for ideas, expressions or materials taken from another source, including internet sources, is guilty of plagiarism. Any student helping another to plagiarize may be found guilty of academic misconduct.

1.08 Academic Dishonesty: In general, by any act or omission not specifically mentioned above and which is outside the customary scope of preparing and
completing academic assignments and/or contrary to the above stated policies concerning academic integrity.

If found cheating, YOU WILL RECEIVE AN “F” FOR THE CLASS, NO EXCEPTIONS.

Syllabus subject to change